Bom2008b

[Bom2008b]
Segmentation of Polarimetric SAR Data based on the Fisher Distribution for Texture Modeling

Authors:Bombrun Lionel, Jean-Marie Beaulieu

Conference:IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008

 Boston, MA, USA

 7-11 July 2008, vol. V, pp. 350-353

ISBN:978-1-4244-2807-6

URL:https://ieeexplore.ieee.org/abstract/document/4780100

DOI:10.1109/IGARSS.2008.4780100

Abstract:   The Polarimetric Synthetic Aperture Radar (PolSAR) covariance matrix is generally modeled by a complex Wishart distribution. For textured scenes, the product model is used and the texture component is often modeled by a Gamma distribution. In this paper, authors propose to use the Fisher distribution for texture modeling. From a Fisher distributed texture component, we derive the distribution of the complex covariance matrix and we propose to implement the KummerU distribution in a hierarchical segmentation and a hierarchical clustering algorithm. Segmentation and classification results are shown on synthetic images and on ESAR L-band PolSAR data over the Oberpfaffenhofen test-site.

Segmentation of Polarimetric SAR Data based on the Fisher Distribution for Texture Modeling,
Bombrun Lionel, Jean-Marie Beaulieu,
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7-11 July 2008, pp. 350-353.
[Bibtex]

@Conference{Bom2008b,
author = {Bombrun, Lionel and Beaulieu, Jean-Marie},
editor = {},
title = {Segmentation of Polarimetric {SAR} Data based on the Fisher Distribution for Texture Modeling},
booktitle = {IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008},
volume = {V},
publisher = {IEEE},
url = {https://ieeexplore.ieee.org/abstract/document/4780100},
isbn = {978-1-4244-2807-6},
doi = {10.1109/IGARSS.2008.4780100},
address = {Boston, MA, USA},
pages = {350-353},
year = {2008},
month = {7-11 July},
abstract = {The Polarimetric Synthetic Aperture Radar (PolSAR) covariance matrix is generally modeled by a complex Wishart distribution. For textured scenes, the product model is used and the texture component is often modeled by a Gamma distribution. In this paper, authors propose to use the Fisher distribution for texture modeling. From a Fisher distributed texture component, we derive the distribution of the complex covariance matrix and we propose to implement the KummerU distribution in a hierarchical segmentation and a hierarchical clustering algorithm. Segmentation and classification results are shown on synthetic images and on ESAR L-band PolSAR data over the Oberpfaffenhofen test-site.},
mypdf = {13},
keywords = {Classification; Clustering algorithms; complex Wishart distribution; covariance matrices; covariance matrix; Electromagnetic scattering; ESAR L-band PolSAR data; Fisher distribution; Gamma distribution; geophysical techniques; geophysics computing; hierarchical clustering algorithm; hierarchical segmentation; image classification; image segmentation; image texture; KummerU; KummerU distribution; L-band; Layout; Oberpfaffenhofen test-site; Polarimetric SAR images; Polarimetric Synthetic Aperture Radar data; Polarization; radar polarimetry; Radar scattering; Receiving antennas; remote sensing by radar; Segmentation; Speckle; synthetic aperture radar; Texture; texture component; texture modeling},
openpdf = {https://hal.archives-ouvertes.fr/hal-00369374/},
openid = {HAL archives-ouvertes}
}

DOWNLOAD   from the Publisher

DOWNLOAD   from HAL archives-ouvertes   (open access)

DOWNLOAD   this page printed version

‪© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.‬

Published in: IGARSS 2008 – 2008 IEEE International Geoscience and Remote Sensing Symposium
Date of Conference: 7-11 July 2008
Date Added to IEEE Xplore: 10 February 2009
INSPEC Accession Number: 10472712
Print ISSN: 2153-6996
Electronic ISSN: 2153-7003
Publisher: IEEE