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Abstract 

 

The segmentation of SAR (Synthetic Aperture Radar) images is greatly complicated by the 

presence of coherent speckle. A hierarchical segmentation algorithm based upon stepwise 

optimisation is used. It starts with each individual pixel as segments and then sequentially merge 

the segment pair that minimises the criterion. In a hypothesis testing approach, we show how the 

stepwise merging criterion is derived from the probability model of image regions. The Ward 

criterion is derived from the Gaussian additive noise model. A new criterion is derived from the 

multiplicative speckle noise model of SAR images. The first merging steps produce micro-

regions. With standard merging criteria, the high noise level of SAR images results in the 

production of micro-regions that have unreliable mean and variance values and irregular shapes. 

If the micro-segments are not correctly delimited then the following steps will merge segments 

from different fields. In examining the evolution of the initial segments, we see that the merging 

should take into account spatial aspects. Particularly, the segment contours should have good 

shapes. We present three measures based upon contour shapes. They use the perimeter, the area 

and the boundary length of segments. These measures are combined with the SAR criterion in 

order to guide correctly the segment merging process. The new criterion produces good micro-

segmentation of SAR images. The criterion is also used in the following merges to produce 

larger segments. This is illustrated by synthetic and real image results.  

 

 



1.  Introduction 

 

In remote sensing, a segmentation process could be used to detect land fields and to improve 

pixel classification. The segmentation of SAR (Synthetic Aperture Radar) images is greatly 

complicated by the presence of coherent speckle. The complex structure of the SAR images 

requires the utilisation of complex processes for the segmentation. 

 

The main approaches to image segmentation are based upon classifications, edges or regions. 

Image segmentation could result from the classification or the labelling of each pixel. The main 

process is the classification of pixels where the spatial aspect is not usually considered (Smith 

1996). The image partition is a side effect of the classification. Supervised and unsupervised 

classifications are often based on probabilistic models. Markov random field models have been 

used to include the spatial aspect into the class probabilistic models (Lee et al. 1999). Texture 

attributes and models are used for classification and segmentation (Comer and Delp 1999). 

 

An edge detection process could be used to define segment boundaries (Touzi et al. 1988, Caves 

et al. 1998). A post-processing step could be needed to close segment boundaries. The active 

contour techniques look for the optimum position of a closed boundary by minimizing an energy 

function (Xu et al. 1994). The watershed approach grows regions from a gradient image (Najman 

and Schmitt 1996, Fjørtoft et al. 1998).  

 

We consider that truth image segmentation processes are based upon regions. The goal of the 

process is to identify regions (segments) that satisfy some criteria. Spatial aspects are involved in 



the criteria.  It is often defined as hierarchical segmentation. A typical agglomerative approach 

involves the sequential growing of regions. The first techniques used threshold-based decisions. 

More powerful techniques now use iterative optimisation processes (Beaulieu and Goldberg 

1989, Caves et al. 1998, Lira and Frulla 1998, Dong et al. 1999, Li et al. 1999, Raucoules and 

Thomson 1999). Multiresolution approaches are proposed for segmentation (pyramid and quad-

tree) (Razaee et al. 2000, Bosworth et al. 2003) and edge detection (wavelet). Different 

techniques combine the information of regions and edges (LeMoigne and Tilton 1995,  Zhu and 

Yuille 1996). Region growing could be combined with classification (spectral clustering) (Tilton 

1998). 

 

The processing of SAR images is difficult because of the large variance of the speckle 

multiplicative noise. The development of filters adapted to SAR images has required a sustained 

effort of many researchers (Lopes et al. 1990, 1993, Schwarz et al. 1997). The accurate detection 

of edges in SAR images is also a difficult task (Li et al. 1999). Similar difficulties are present in 

image segmentation. In SAR image processing, we need to average over a large set of 

homogeneous pixels in order to obtain accurate measures because of the large speckle variance. 

However, we do not know in advance where are the boundaries between homogeneous regions 

or fields. Delimiting homogeneous regions is an important step or output of the process. One 

approach is to reduce the speckle noise by reducing the resolution. Another approach is to apply 

an optimisation process with an appropriate signal model. More complex models have often the 

unproductive effect of requiring large averaging windows.  

 



In hierarchical SAR image segmentation, the parameter accuracy problem is mostly present at 

the first segment mergers when the compared segments are small. Different techniques are used 

to obtain an initial partition with small segments: speckle filtering (Lira and Frulla 1998, 

Raucoules and Thomson 1999), watershed process (Dong et al. 1999, Li et al. 1999), and wavelet 

transform (Dong et al. 1999). The resolution (final locations) of segment boundaries is 

determined by the initial partition. Complex field models have been used for the description of 

segments such as texture models (Lira and Frulla 1998, Raucoules and Thomson 1999). 

 

In this paper, we are exploring the utilisation of spatial constraints and contour shapes in order to 

improve the segmentation results. The complex structure of the SAR images requires the 

utilisation of a composite criterion for the segmentation. This criterion is particularly designed to 

be applied for the first segment mergers.  It is not based upon texture parameters. Instead, we 

have examined how the initial segments grow and developed criteria to control the spatial 

progression.  

 

A standard hierarchical segmentation algorithm is used with an adaptation of the Ward criterion 

to the multiplicative nature of the speckle. It starts with each individual pixel as segments and 

then sequentially merge the segment pair that minimises the criterion. Segments grow by 

merging and first form micro-segments, that later will become larger segments. With standard 

merging criteria, the high noise level of SAR images results in the production of micro-regions 

that have unreliable mean and variance values and irregular shapes. If the micro-segments are 

not correctly delimited then the following steps will merge segments from different fields and 

produce contours delimiting speckle artefacts instead of the truth field boundaries. In examining 



the evolution of the initial segments, we see that the merging should not only be based upon grey 

level values but should also take into account spatial aspects. Particularly, the segment contours 

should have good shapes. We present three measures based upon contour shapes. These 

measures are combined with the adapted Ward criterion in order to guide correctly the segment 

merging process.  

 

The new criterion produces good micro-segmentation of SAR images. The criterion could also 

be used in the following merges to produce good SAR image segmentations (larger segments). 

This is illustrated by synthetic and real image results.  

 



2.  Hierarchical segmentation of SAR images 

 

A segmentation is a partition P of the image plane I into n disjoint regions Si  I such that 

P = { S1, S2 … Sn }, Si  Sj =  for i  j and iS I . A segment hierarchy can be represented 

by a tree where segments at lower levels are joined to form segments at higher levels. The ith 

node at the th level of the tree corresponds to the segment Si

. The links between nodes indicate 

set inclusion. Hence, a link between a segment Sk
+1

 (ancestor or parent) and its disjoint subparts 

Si

 (descendants or sons) indicates that Si


  Sk

+1
. The root of the tree corresponds to I, the whole 

picture, and the leaves to pixels. An image partition, P, therefore corresponds to a node set 

{ S1, S2 … Sn }, called a node cutset, which is the minimal set of nodes separating the root from 

all the leaves. 

 

2.1. The Hierarchical Stepwise Optimisation algorithm 

 

A hierarchical segmentation algorithm, inspired from hierarchical data clustering and based upon 

stepwise optimisation is used in this paper. In a merging scheme, a hierarchical clustering starts 

with n clusters, and sequentially reduces the number of clusters by merging. An important 

limitation of the hierarchical clustering approach is its excessive computing time for large data 

set. If there are n clusters, then the similarity measures for n(n-1) possible cluster pairs must be 

calculated. In image segmentation, however, only adjacent segments can be merged, reducing the 

number of potential segment pairs per iteration to nm, where n is the number of segments, and 



m the average number of neighbours per segment. m is usually small (4  m  8) and is quite 

independent of n.  

 

A hierarchical segmentation algorithm based upon stepwise optimisation is now presented 

(Beaulieu and Goldberg 1989). A segment similarity measure, Ci,j, is defined as the stepwise 

criterion to optimise. At each iteration, the algorithm employs an optimisation process to find the 

two most similar segments, which are then merged.  The algorithm can be defined as follows:  

 

i) Define an initial image partition.  

ii) For each adjacent segment pair, (Si, Sj), calculate the stepwise criterion, Ci,j;  

then find and merge the segments with the minimum criterion value.  

iii) Stop, if no more merges are needed;    

  otherwise, go to ii).  

 

The algorithm is designed such as to reduce the computing time. In the initialisation step, the 

computing time is a function of the image size, the number of initial segments, and the number of 

neighbours per segment. On the other hand, the iterative steps are short and the computing time is 

mainly a function of the number of neighbours. A segment merge affects only the surrounding 

segments and only the criteria involving those segments need to be updated. The number of 

iterations depends upon the number of initial and final segments, each iteration reducing by one the 

number of segments. The algorithm requires substantial temporary memory space to store the 

current descriptive parameters, neighbour sets and criterion values. Usually, the initial partition 

contains one distinct segment for each pixel. The number of iterations to build the complete 



segment tree is equal to the number of pixels minus one. With an appropriate stepwise criterion, the 

average number of neighbours of created segments is small ( 8). In this case, the processing time 

of the algorithm grows rather linearly with the image size. For example, with a Pentium IV, 1.7 

GHz, the computing time is 42.3 sec. for a 1000x1000 image.  

 

2.2. Segmentation by hypothesis testing 

 

Different segment similarity measures (stepwise criteria) can be employed, each one corresponding 

to different definitions of the image segmentation task. A statistical hypothesis testing approach 

can be employed for image segmentation. An image is regarded as composed of regions with 

different grey level probability density functions (pdf). An image segmentation can be produced 

by testing and merging two segments if they belong to the same region. 

 

It is assumed that an image f(x, y) is composed of distinct regions { Rk }.Each region is viewed as 

a statistical population and is defined by its probability density function, PDFk. The goal of an 

image segmentation process is to find the truth picture partition { Rk }. Let Si, designate any 

arbitrary subpart of a true region Rk, Si  Rk. The merging of segments can be based upon 

hypothesis testing. As the characteristics of Rk are unknown, the statistical decision must 

consider whether the pixel values of two segments come from the same probability density 

function. 

 

A test is usually described in terms of some statistic d that is a reduction of the observed data. 

Let d be a measure of the similarity of the estimated probability density functions of segments Si 



and Sj. A statistical decision process can then be used to determine which one of the following 

two hypotheses is true. 

  H0: d = 0 

  H1:  d = dtrue (1) 

The hypothesis H0 indicates that the two segments belong to the same truth region, while the 

hypothesis H1 defines segments belonging to different regions. The statistical decision consists 

of accepting H0 if d is small, more precisely, if d  t, where t is a selected threshold. The 

performance of a test is judged according to its tendency to lead to wrong decisions. Two types 

of error are considered: 

  Type I:  rejecting H0 when H0 is true 

  Type II:  accepting H0 when H1 is true.  (2) 

The probability of these two types of error are represented, respectively, by  and . They must 

both be low for a good decision process The threshold value t can be modified such as to reduce 

either  or , but not both simultaneously.  

 

Hierarchical segmentation begins with many small segments that are sequentially merged to 

produce larger ones. Statistical decision can be employed to determine whether, or not, two 

adjacent segments must be merged. The sequential aspect of hierarchical segmentation must be 

considered in the design of the decision process. It can be noted that type II error results from 

merging of two different segments, and therefore, cannot be recovered by an agglomerative 

process. Whereas, type I error keeps separated two similar segments which can be corrected in a 

following step. Therefore, it seems preferable to keep  at a low level to avoid type II errors. The 



hierarchical segmentation could be regarded as a sequential testing process where we should 

consider the error probability of the final result, not the error probabilities of each individual test. It 

have been shown that in hierarchical segmentation, it is advantageous to keep  at an appropriately 

low level for each test, even if large  values must be used in the first tests (Beaulieu and Goldberg 

1989). 

 

2.3. Stepwise criterion 

 

In hierarchical segmentation, it is preferable for each stage k to keep k, the probability of type II 

error, as low as possible. This is achieved by maximising k. At each stage or segment level, 

there are many possible segment mergers, which can be represented by segment pairs (Si, Sj). 

The segment similarity statistic, di,j, can be calculated for each pair. A statistical decision process 

accepts the hypothesis H0 and merges segments only if: 

 di,j  t() (3) 

which can be rewritten as: 

 vi,j    1 –       or         1 – vi,j (4) 

where vi,j, is the confidence level associated with the interval (0, di,j), i.e. vi,j is the probability of 

obtaining a value d such that d  di,j: 

 vi,j  =  prob( d  di,j ; H0 ) (5) 

Defining vmin as the minimum over vi,j, vmin = min(vi,j), the maximum allowed value for  is 

max = 1-vmin, which results at least in one merger. Hence, a hierarchical segmentation algorithm 



can employ a stepwise process that finds the segment pair with the minimum confidence level vi,j 

and merges the corresponding segments. This will assure that, at each step, the probability of 

type II error k  is kept to it lowest value.  

 

2.4. Criterion for additive Gaussian noise 

 

The Ward criterion is now derived. We assume that an ideal image is composed of constant 

value regions corrupted by a uniform Gaussian white noise. Each pixel value f(x, y) inside a 

region Rk, (x, y)  Rk, is regarded as a random variable, with Gaussian distribution of mean mk 

and variance 
2
, N(mk, 

2
). The difference of the segment means could be used to decide if two 

segments belong to the same region: 

 di,j  =   i - j  (6) 

where i and j  are the mean values of segments Si and Sj. 

 

If H0 is true, di,j has a Gaussian distribution with a zero mean and a variance of  2d : 

 2d   = (1/ni + 1/nj)  
2
 (7) 

where ni and nj are, respectively, the sizes of segments Si and Sj. The confidence level associated 

with the interval (0, di,j) under the H0 hypothesis is: 

   vi,j  =  Prob ( d  di,j ; H0 ) 

   
,

,

2

2
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   vi,j  =  2  erf ( di,j    d )  (8) 

The segment pair, Si and Sj, that minimises di,j  d will also minimise vi,j. Therefore, di,j  d could 

be used as a stepwise criterion: 

 
,ward

i,jC
 

 
  

i ji j i j

d i j

d n n

n n
 (9) 

 is a constant value that can be removed from the criterion equation.  

 

2.5. Criterion for SAR speckle noise 

 

Radar images are mainly characterised by the presence of speckles. The radar signal can be 

modelled as a random process. The probability density function of the signal intensity or power, 

for a L-look signal follows a Gamma distribution: 

 
11

( ) exp
( )

L

LL L f
p f f

L m m

    
    
    

 (10) 

where m is the mean value of the signal intensity. The standard deviation  increases with the 

mean value,  = m   L . 

 

The multiplicative aspect of the speckle noise is illustrated by the following model of the radar 

signal: 

 ( , ) ( , ) ( , )f x y m x y u x y   (11) 



where f(x,y) is the observed image intensity and m(x,y) is the ground reflectivity. The 

multiplicative speckle noise, u(x,y), is statistically independent of m(x,y) and has a mean value of 

one. 

 

As in the previous case, the difference of the segment means could be used to decide if two 

segments belong to the same region. Under the H0 hypothesis, we know that the segments Si and 

Sj belong to the same region Rk with truth mean value mk. The pdf of segment mean i follows a 

Gamma distribution with 2 ni L degrees of freedom. We know that the mean of di,j is zero. 

However, it is difficult to obtain its pdf.  

 

For large ni L values, the distribution of segment mean i can be approximated by a Gaussian 

distribution with a mean value of mk and a variance of 2
i  = (mk)

2
 / ni L (Lopes et al. 1993). 

Then, di,j will have a Gaussian distribution with a zero mean and a variance of 2d : 

 2d   = (1/ni + 1/nj) (mk)
2
 / L (12) 

where mk could be estimated by the mean value i+j of Si  Sj. The confidence level associated 

with the interval (0, di,j) under the H0 hypothesis is: 

 vi,j  =  2  erf ( di,j    d ) (13) 

Therefore, di,j  d could be used as the stepwise criterion for SAR image segmentation: 

 
,sar

i,jC
i ji j i j

d i j i j

d n n
L

n n 

 
 
  

 (14) 

where L  is a constant value that can be removed from the criterion equation.  



 

This criterion has been appropriate for the segmentation of SAR images. Other criteria could be 

used such as the ratio of segment means and the coefficient of variation (Touzi et al. 1988, Caves 

et al. 1998, Fjørtoft et al. 1998). The Ward criterion (9) could be used with the logarithm of the 

SAR image (Raucoules and Thomson 1999).  TheSAR criterion (14) seems a natural adaptation 

of the Ward criterion to the multiplicative nature of the speckle noise. The important points are 

the utilisation of the criterion in the context of stepwise optimisation and its derivation from the 

segment mean difference statistic.  

 

The SAR criterion (14) uses a Gaussian approximation of the segment mean distribution that is 

valid only when the number of pixels multiplied by the number of looks is large. This is not 

usually the case for the first iterations when the segments are small and could contain only one 

pixel. In practice, the criterion is useful event for small segments and produces good results. 

Good segmentation results are obtained with 1-look images.    



3.  Contour criteria 

 

We have derived a stepwise criterion to take into account the multiplicative nature of speckle 

noise. The segmentation of SAR image is also complicated by the large amplitude of the noise. 

For a 4-look image, the standard deviation of the noise is half the mean value of the signal. It is 

difficult then to discriminate between regions with small mean value differences.  

 

3.1. Micro-segment shapes in SAR images 

 

An advantage of the stepwise optimisation rule is its gradual aspect: the most similar segments 

are merged first. This assures that the first mergers produce segments corresponding to 

homogeneous regions. For SAR images, the range of grey level values inside homogeneous areas 

is large. The first mergers will produce micro-segments inside the homogeneous regions, each 

micro-segment including pixels from only a part of the grey level range of the region. The grey 

level ranges of adjacent regions will often overlap. This will result into the formation of micro-

segments crossing the region boundaries and  having pixels from different homogeneous regions. 

The merging of micro-segments across boundaries is possible because micro-segment grey level 

variances are small and do not correspond to the value ranges of  homogeneous regions. It could 

then happen that the most similar neighbour of a micro-segment will be a micro-segment on the 

other side of the boundary and not one belonging to the same homogeneous region. 

 

The first segment mergers should not cross distinct region boundaries. This can not be corrected 

in the following mergers and can only increase the confusion between adjacent regions. To 



illustrate this point, the segmentation technique is applied on a 100x100 synthetic image with 

four looks. Figure 1 shows the amplitude image composed of four regions with different mean 

values:  1.0, 1.4, 1.7 and 2.2. The SAR criterion (14) is used to segment this image. In the 

partition with 10 segments (figure 2), the shapes and boundaries are not well defined. The 

segments are not compact, but have many branches. The partition with 1000 segments (figure 3) 

shows micro-segments with irregular shapes. 

 

In a homogeneous region, there are local minima and maxima corresponding to pixels coming 

from the tails of the Gamma distribution. The extents of the micro-segments containing theses 

pixels are limited. Micro-segments with intermediary pixel values will try to expend between the 

extrema and could develop long branches (see marked segments in figure 4).   

 

3.2. Contour criteria 

 

To improve the segment growing process in the context of homogeneous regions with large grey 

level ranges, spatial information should be used to guide the process. We will use segment 

contour and shape constraints to limit erratic expansions of segments. Three contour measures or 

factors, Cp, Ca and Cl, are derived from the segment perimeter, the segment area and the contour 

length. The three factors are combined in an ad hoc manner with the SAR stepwise criterion 
sar
i,jC  

to produce the new stepwise criterion:  

 
contour sar 2
i,j i,jC = C × Cp × Ca × Cl  (15) 

 



Figures 5 and 6 show the improved segmentation results obtained with the new criterion on the 

synthetic image. Other contour shape factors could be used (Chassery and Montanvert 1991, 

Palmer 1999, Fontoura Costa and Cesar 2001). We selected simple criteria that ensure the 

formation of compact and well-formed segments. The contour length factor is a modification of 

the phagocyte heuristic of Brice and Fennema (1970). 

 

3.3. Segment perimeter factor 

 

We are examining the shape of the segment produced by the merger, Si  Sj. We can define a 

bounding box containing the segment: a rectangle with left and right sides corresponding to the 

minimum and maximum values of the x coordinate of the segment and with the top and bottom 

sides corresponding to the minimum and maximum values of the y coordinate (Chassery and 

Montanvert 1991). Each pixel corresponds to a square surface. The perimeter of a segment is a 

multiple of the pixel side length. If a segment is round or convex, the segment and the bounding 

box will have the same perimeter value. The perimeter will increase if a part of the contour is 

concave or forms deep bays (see figure 7-a). The perimeter factor is defined as: 

 Cp
i jperimeter of S S

perimeter of bonding box


  (16) 

This factor has a minimum value of 1.0 and the value will increase as the segment develops deep 

bays.  

 

3.4. Segment area factor 

 



The area of the bounding box can also be compared with the area of the segment (see figure 7-b). 

 Ca
i j

area of bonding box

area of S S



 (17) 

The factor value will be 1.0 if the segment form a horizontal or vertical rectangle. The value will 

increase if the segment have many bays or if it is elongated in the diagonal directions. 

 

3.5. Contour length factor 

 

The contour length factor will promote the merging of two segments if one is included or 

surrounded by the other one. In this case, the common boundary is important and corresponds to 

a large fraction of the total boundary of one or both segments (see figure 7-c).   

 

Cl ,

i i

ji

Lc length of common part of contours

lex length of exclusive part for S

lexlex
Min

Lc Lc





 
  

 

 (18) 

For two neighbour pixels, the factor value is 3.0. For two rectangle segments, the value will be 

between 1.0 and 3.0 if the common boundary is one of the long sides and higher if it is one of the 

short sides. The value will be smaller than 1.0 if an important part of one segment is intruded 

inside the other.  

 



4.  Segmentation results 

 

The hierarchical segmentation technique adapted for SAR image and with contour criteria is 

used to segment a 6-look ERS-1 image (1000x1000). The algorithm has produced good micro-

segments with appropriate shapes. The same criterion is used in the following merges to produce 

larger segments. Good SAR image segmentations are produced. A partition with 1000 segments 

is obtained (average segment size is 1000 pixels). Figure 8 shows a 500x500 region of the SAR 

image and figure 9 shows the segmentation result. In figure 10, the segment boundaries are 

overlaid on the grey level image. We see that the segment formation is data driven. Looking at 

the grey level image, we see that segment boundaries are drawn between areas with different 

grey level values. A remaining problem is to define when to stop the segment mergers. The 

stopping time could be different for different part of the picture. This task should be performed 

by a higher level post-processing step.   

 

To illustrate the importance of the contour criteria, we have produced an image partition with 

1000 segments without the contour criteria. Figure 11 shows a 500x500 area of the 1000x1000 

image. This is a more complex figure than figure 9. The lengths of the  contours are larger and 

the shapes are irregular. Segments have branches intruded inside other segments. 

 

Good results are also obtained with 1-look SAR images. As the variance inside homogeneous 

regions is larger, it is more difficult to discriminate between regions. For example, for a 1-look 

synthetic image, we obtain similar results as the 4-looks image of figure 1 when intensity 

contrasts are multiplied by 4 (amplitude contrasts multiplied by 2). The importance of the 



contour shape criteria will decrease as the number of looks becomes large and the variation 

inside region becomes small.  

 

5.  Conclusion 

 

This paper has shown the importance of the first segment mergers in hierarchical SAR image 

segmentation. The proposed contour criteria are simple and effective in guiding the first mergers. 

These criteria could be useful for larger segments. For SAR images, we should look for 

appropriate high level criteria for the last mergers. 
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Figure 1. A synthetic 4-look 100x100 SAR image. 

 

 

 

 

Figure 2. Partition with 10 segments. 

 



 

 

Figure 3. Partition with 1000 segments 

 

 

 

 

Figure 4. Shape of micro-segments. 

 

 



 

 

Figure 5. Partition with 10 segments from the contour criteria. 

 

 

 

 

 

Figure 6. Partition with 1000 segments from the contour criteria. 
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Figure 7. Illustrations of shape criterion evaluation: a) segment perimeter criterion,  

b) segment area criterion and c) contour length criterion. 



 

 

 

Figure 8. ERS-1 4-look image (500x500). 

 



 

 

 

Figure 9. Partition with 1000 segments (500x500 region of the 1000x1000 image). 

 



 

 

 

Figure 10. Overlay of the grey level image and the contour image (figures 8 and 9). 

 



 

 

 

Figure 11. Segmentation without the contour criteria (1000 segments as in figure 9). 

 




